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Introduction

The way the brain controls body movements has been 
an active field of study in systems neuroscience and in 
the development of brain–machine interfaces used in the 
control of external devices by paralysed patients (Geor-
gopoulos et al. 1986; Birbaumer et al. 1999; Donoghue 
2002; Alfalo and Graziano 2006; Chen and Tehovnik 
2007; Tehovnik et al. 2013; Baranauskas 2014; Chen et al. 
2014; Schiller and Tehovnik 2015). Although some might 
believe that the brain can operate independently of the 
body, a central part of brain control depends critically on 
having an intact body to allow maximal feedback by way 
of the senses to produce correct motor responses (Gibson 
1979; Sainburg et al. 1995; Clark 1998; Tehovnik et al. 
2013). When the feedback is compromised (as in paralysed 
patients), it causes a measurable reduction in information 
transfer even if the neural signals are collected directly 
from the brain to move external devices for the purpose of 
bypassing damaged circuits (Birbaumer 2006; Dornhege 
2006; Tehovnik et al. 2013; Tehovnik and Teixeira-e-Silva 
2014). Thus, we reason that information transfer via the 
brain decreases as sensorimotor feedback decreases. Here 
we are referring to the information transferred by the whole 
brain in terms of bits per second to yield a motor response. 

Abstract In this review, we examine the importance of 
having a body as essential for the brain to transfer informa-
tion about the outside world to generate appropriate motor 
responses. We discuss the context-dependent conditioning 
of the motor control neural circuits and its dependence on 
the completion of feedback loops, which is in close agree-
ment with the insights of Hebb and colleagues, who have 
stressed that for learning to occur the body must be intact 
and able to interact with the outside world. Finally, we 
apply information theory to data from published studies to 
evaluate the robustness of the neuronal signals obtained by 
bypassing the body (as used for brain–machine interfaces) 
versus via the body to move in the world. We show that 
recording from a group of neurons that bypasses the body 
exhibits a vastly degraded level of transfer of information 
as compared to that of an entire brain using the body to 
engage in the normal execution of behaviour. We conclude 
that body sensations provide more than just feedback for 
movements; they sustain the necessary transfer of informa-
tion as animals explore their environment, thereby creating 
associations through learning. This work has implications 
for the development of brain–machine interfaces used to 
move external devices.
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Our hypothesis as argued below is supported by four obser-
vations: First, the volitional control of neurons in behaving 
monkeys drops when the proprioceptive inputs to the brain 
are severed. Second, proprioception as well as the other 
senses via the body is necessary for the execution of nor-
mal body movements. Third, for learning to occur an intact 
sensory feedback system is required to accurately associate 
events over time. Finally, the amount of information trans-
ferred by the brain via current brain–machine interfaces is 
far below that transferred by an intact brain with full access 
to sensory feedback. We use information theory to make 
cross-study comparisons using bits per second (Shannon 
1948; Georgopoulos and Massey 1988; Dornhege 2006; 
Tehovnik et al. 2013). We suggest that the poor perfor-
mance of current brain–machine interfaces is related to a 
diminished sensory feedback.

Volitional control of neural circuits

Eberhard Fetz was one of the first investigators to train 
monkeys to regulate volitionally the activity of neurons 
in the motor cortex (Fetz 1969). His studies have become 
central in the development of brain–machine interfaces 
(Tehovnik et al. 2013). Fetz trained monkeys to increase 
the firing rate of a single neuron by 50–500 % in exchange 
for a food pellet that was dropped into a dispenser in front 
of an animal’s mouth. After conditioning, the neurons 
would burst for 100–800 ms. For optimal performance, 
5–12 food pellets were delivered per minute putting the 
average trial time at 5–12 s. All recordings were done in the 
hand area of the motor cortex, albeit hand retrieval of food 
pallets was not needed. Some 3–8 training sessions con-
ducted over days were required for a monkey to gain con-
trol over a neuron. One cell was examined per session. For 
all experiments, the monkeys were free to move their head 
and limbs as they learned to control the firing rate of cells, 
and in some cases, movement of the forelimbs was coinci-
dent with the neural response. For trials in which a reward 
was denied, there was rapid extinction of the response, and 
random reinforcement outside the context of the task failed 
to drive the cells. In this case, the reinforcement between 
a given body movement with a goal in the extrapersonal 
space completes the loop for the volitional control of the 
neural circuits (Fig. 1a), something that has received much 
attention in the study of normal behaviour (Kobayashi and 
Schultz 2008; Shadmehr 2010) and brain–machine inter-
faces (Rajalingham et al. 2014).

The role of body movement in the conditioning response 
was later investigated in detail (Fetz and Finocchio 1971). 
The arm contralateral to the recording site in the motor cor-
tex was secured by a cast, as a monkey was rewarded for 
contraction of one of the four muscle groups, i.e. flexors or 

extensors of the wrist or flexors or extensors of the elbow. 
After training, a single muscle group could be contracted, 
which was accompanied by the firing of a unit. Such units 
typically fired in advance of a muscle contraction. The 
monkey was then trained to discharge a unit while sup-
pressing all muscle contractions. Although the four mus-
cles under study could be made not to contract as a neuron 
was made to discharge, it is unclear whether muscles out-
side of the four under study were now contributing to the 
unit response. In subsequent experiments, it was found that 
training monkeys to suppress the bursting of a neuron while 
eliciting a muscle contraction could never be achieved in 
the hand or leg regions of the motor cortex (Fetz and Finoc-
chio 1972; Fetz and Baker 1973). It is noteworthy that most 
precentral cells were found to respond to the passive move-
ment of the forearm even when all recorded muscle activ-
ity was suppressed even though these same cells typically 
responded in advance of a muscle contraction when using a 
conditioning paradigm (Fetz and Finocchio 1972; Fetz and 
Baker 1973). Note that the somatosensory cortex is con-
nected to the motor cortex for the transmission of kinaes-
thetic and other somatosensory information (Kalaska et al. 
1983; Mountcastle et al. 1992). The forgoing suggests that 
the responsivity of neurons in the motor cortex is affected 
by both volitional and passive movements.

Wyler et al. (1979) determined how dependent the con-
ditioned response of neurons in motor cortex is on pro-
prioception as conveyed by Fig. 1a, b afferents. Follow-
ing disruption of the proprioceptive feedback from the 
contralateral forearm (via C5–C7 ventral rhizotomies) of 
a monkey, they reported that the volitional control of the 

Fig. 1  Volitional control of neurons by the brain of monkeys. a The 
volitional control of neurons yields a reward delivery (top panel). 
When reward delivery is disrupted there is no longer any volitional 
control (bottom panel). b The volitional control of neurons with 
proprioceptive feedback yields a reward delivery (top panel). When 
proprioceptive feedback is disrupted there is no longer any volitional 
control (bottom panel)
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neurons was abolished (Fig. 1b). It is noteworthy that this 
monkey could improve his performance by manipulating 
his flaccid arm with his functional hand to activate specific 
joints and tendons to better drive the motor cortical neu-
rons. In the same study, destruction of the pyramidal tract 
in the spinal cord (which also included the spino-cerebellar 
pathways that carry proprioceptive information) produced 
only a minor drop in performance. A previous study by the 
same group showed that bilateral lesions of the dorsal col-
umn pathways (which transmit proprioceptive information 
as well) also affected the conditioning responses (Wyler 
and Burchiel 1978). Just how the proprioceptive afferents 
contribute to the volitional control of the cortical motor 
neurons needs further clarification given the challenges of 
completely and precisely eliminating all proprioceptive 
inputs anatomically to the neocortex. Nevertheless, regard-
less of the details of how proprioception contributes to this 
control, it is very clear that information from the body must 
also participate in this process for maximal effectiveness.

Knowing where the body is

As indicated “knowing where the body is” is important for the 
volitional control of neurons and hence body movements. The 
skeletomotor system is equipped with muscles spindles and 
tendon organs (plus maybe even cutaneous receptors, Collins 
et al. 2005) to register the position of the body parts (Feuer-
bach et al. 1994; Dover and Powers 2003). Much experimen-
tation has been done on the proprioception of skeletal muscles 
(Jones 1988; Ghez et al. 1990; Ghez and Sainburg 1995; Gor-
don et al. 1995; Sainburg et al. 1995; Bagesteiro et al. 2006; 

Sarlegna and Sainburg 2007; Sarlegna et al. 2009; Sarlegna 
and Sainburg 2009). Sainburg et al. (1995) show that patients 
lacking proprioceptive input (caused by large fibre sensory 
neuropathy resulting in the loss of stretch reflexes) were 
deficient in performing multi-joint movements. They were 
required to trace the out-and-back movement of a template 
line displayed on a computer screen while not being able to 
see their moving hand. Electromyograms of the elbow mus-
cles were measured, and all movements were assessed by 
recording the movements of a hand-held pen. Large distortions 
of hand path occurred when the direction of movement was 
reversed (our Fig. 2, Sainburg et al. 1995). This was related to 
the poor timing between the joints of the elbow and shoulder 
which is a consequence of decreased proprioceptive feedback. 
Not surprisingly, deafferented patients can use visual informa-
tion to guide the trajectories of their movements (Ghez et al. 
1990; Ghez and Sainburg 1995; Gordon et al. 1995).

The proprioceptive system has also been studied by 
delivering a vibratory stimulus to muscles which cause 
human subjects to systematically mislocate the position of 
their body parts (Lackner and Levine 1978, 1979; Jones 
1988). This mislocation is presumed to be caused by the 
mechanical activation of afferents of muscles spindles 
(Goodwin et al. 1972a, b). Craske (1977) blindfolded sub-
jects as one forearm was stimulated using vibration of the 
elbow and as the other forearm was used to indicate the 
position of the stimulated forearm. The stimulation induced 
a 23° deviation (on average) between the actual versus the 
perceived location of the stimulated forelimb. If the limb 
was now positioned at its extension or flexion limit, such 
stimulation could induce a perception of hyperextension or 
hyperflexion. Here subjects perceived their arm as being 

Fig. 2  Hand paths of controls 
(MFG, CG) and deafferented 
patients (MA, CF) showing the 
consequences of lacking visual 
and proprioceptive feedback 
in arm movements. Subjects 
were required to execute a 
movement in one of the six 
directions and then reverse the 
movement. Arrow indicates the 
path towards the 30° location 
for each subject. Data from 
Sainburg et al. (1995)
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curved, or as oscillating between two positions, or even as 
being dislocated and broken.

Vibratory stimuli have also been used to evoke the 
waist-shrinking illusion which distorts the perception of 
one’s body size (Ehrsson et al. 2005). As a subject is made 
to put his hands on his waist and hips, the application of a 
vibratory stimulus to the wrist extensors produces the illu-
sion that the hands are being bent inward and that the body 
is being reduced in size at the waist.

As with the skeletomotor system, delivering vibratory 
stimuli to the muscles of the eyes has been shown to cause 
human subjects to mislocate the position of visual targets 
in space (Valey et al. 1994, 1995, 1997). It has been found 
that when a vibratory stimulus was applied to the inferior 
rectus muscle, a vertical displacement of a stationary spot 
of light (presented in total darkness) was experienced by 
subjects (Valey et al. 1997). The illusion of target displace-
ment did not result from stimulation-evoked eye move-
ments (as measured with an eye tracker) as the movement 
perturbation was short-lived and eye position was restored 
to its original. Yet, the proprioceptive illusion was sustained 
for ~10 s following the restoration, while both the visual 
stimulus and the eyes remained stationary in space.

The view that extraocular proprioception updates the 
spatial frame of references has been supported by recent 
studies. Goldberg and colleagues showed that a putative 
ocular proprioceptive representation exists in the soma-
tosensory cortex (Wang et al. 2007) and that this represen-
tation participates in the late phase of visuomotor coordi-
nate transformation (i.e. at 200 ms after movement offset, 
Xu et al. 2012; cf. Graf and Andersen 2014). As a result 
of this late phase, however, eye proprioceptive representa-
tion in the somatosensory cortex is unlikely to participate 
in the real-time control of eye movement, in line with the 
notion originally postulated by Robinson (1981). Neverthe-
less, given the serious oculomotor deficits that ensue fol-
lowing damage to oculo-propioceptive inputs—unstable 
fixations, ocular drift, and impairments in vergence and 
binocular fixations (Fiorentini and Maffei 1977; Porter 
et al. 1982; Guthrie et al. 1982, 1983)—the role of proprio-
ception in the execution of oculomotor responses needs to 
be re-examined.

In addition to proprioception, the brain receives inputs 
from the visual and vestibular systems to stabilize the 
eyes and head as one navigates through space. The ter-
minal nuclei in the brainstem obtain visual inputs to 
mediate optokinetic nystagmus whose function it is to 
stabilize images on the retina as the visual scene moves 
about (Knapp and Schiller 1984; Simpson 1984; Schil-
ler and Tehovnik 2015); motion and orientation sensors 
situated next to the cochlea subserve vestibular responses 
to right the head with respect to gravity (Leigh and Zee 
2006; Schiller and Tehovnik 2015). Disruption of these 

systems either through blindness or by vestibular damage 
greatly curtails one’s ability to orient through space (Leigh 
and Zee 2006; Tehovnik and Slocum 2013; Schiller and 
Tehovnik 2015).

One of the best examples to appreciate how good the 
brain is at correcting for changes in body position is to note 
that when a skier skies down a slope, the visual scene expe-
rienced by him remains stable. This is because the vestibu-
lar system corrects all the movements of the head via the 
vestibulo-ocular reflex to thereby stabilize the visual image 
(Leigh and Zee 2006). If one were to put a movie cam-
era on the head of the skier, the camera would register all 
the abrupt jumps of the visual scene as the skier descends 
down the slope. The camera has no vestibular apparatus.

In conclusion, the brain is equipped with inputs from 
the proprioceptive, visual, and vestibular systems to help it 
compute how the body is situated in space. We know that 
the brain has a tremendous capacity to predict the future 
position of its body with respect to the outside world (Riz-
zolatti et al. 1996; Eskander and Assad 1999; Chen et al. 
2014). When the brain is mastering such predictions, the 
lack of sensory feedback inevitably leads to severe debili-
tation. It is no surprise, therefore, that the volitional con-
trol of neurons requires feedback from the body to com-
pute its location with the ultimate goal of executing body 
movements.

Learning via the volitional control of neural 
circuits

In 1949, Donald Hebb wrote a book entitled the “The 
Organization of Behavior” in which he proposed that the 
development of the mind (or brain control) occurs through 
learning at the synaptic level of neural circuits, a notion 
that is largely accepted today (Montague et al. 1995, 1996; 
Schultz et al. 1997; Kandel et al. 2013). In this work, Hebb 
emphasized the consequences of growing up without an 
intact body, i.e. without a functioning visual system due 
to congenital blindness. He noted that if such individuals 
recover vision later in adulthood (after having lost vision 
before the age of four), they are impaired at figure-ground 
segregation and they fail to perceive objects such as cir-
cles, squares or triangles. These patients have been studied 
in detail by Gregory and colleagues (Gregory and Wallace 
2001; Fine et al. 2003). It was found that such patients 
developed no object vision even though colour and motion 
perception (including biological motion) were intact. 
Additionally, they had no depth perception unless defined 
by motion. Finally, perspective and the ability to resolve 
occlusions were totally absent.

Hebb surmised (Hebb 1949, pp. 33) that “…we are able 
to see a square as such in a single glance only as the result 
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of complex learning”. This learning he believed comes 
about as children scan their world with their eyes and other 
senses and as they actively engage the world: “…it will be 
found, for example, that with a large figure merely imagin-
ing eye-movements (of following the contours) will restore 
[the] definition of the figure”. Moreover, “each grossly 
different pattern of stimulation, as the object is seen from 
one side or another, requires the establishment of a sepa-
rate set of cell-assemblies. …when this happens the various 
sets of assemblies would gradually acquire an interfacilita-
tion…” (Hebb 1949, pp. 91). Finally, “…it is again fash-
ionable to think of groups of connected neurons … as the 
carriers of individual items of meaning or, if we wish, as 
the morphemes in the language of the brain” (Hebb 1949, 
pp. 141). This idea concurs with the modern view of how 
groups of neurons throughout the brain code for objects 
(Freiwald and Tsao 2010) and language (Ojemann 1983) 
which would have each individual harbour a unique distrib-
uted neural connectivity based on a particular developmen-
tal history of sensorimotor interactions (Hebb 1949).

Hebb’s views on requiring an intact body for develop-
ment and learning have been supported by a functional 
magnetic imaging (fMRI) study. A patient who had recov-
ered vision later in life after having lost it at the age of three 
had his brain scanned with fMRI while being subjected to 
various visual psychophysical tests (Fine et al. 2003). The 
medial temporal cortex responded normally to moving 
stimuli, a region of the brain known for the processing of 
motion information (Tootell et al. 1995). The lingual and 
fusiform gyrus that mediates object vision (Schwarzlose 
et al. 2005), however, was dysfunctional which fitted with 
the patient’s inability to identify objects. Hence, for devel-
opment to occur it is critical that the senses be intact from 
an early age to thereby permit maximal interaction between 
the brain and the world via the body.

The importance of these interactions is best illustrated 
by the now famous studies of Held and Hein (1963). One 
kitten (the active kitten) was reared with normal vision and 
allowed to move freely within the visual world; a second 
kitten (the passive kitten) was confined to a gondola and 
given the same visual experience as the first kitten but had 
all its locomotion controlled by a connection to the first 
kitten. The passive kitten was free to move its eyes and 
head. Both kittens were in a visual environment contain-
ing vertical black and white stripes. The kittens were later 
tested on a visual-cliff avoidance task, which required 
the discrimination of a shallow and deep side. Unlike the 
active kitten, the passive kitten failed this test of depth per-
ception. Hence not being able to move in the world pre-
vents against the development of the visual system. This 
outcome is reminiscent of congenitally blind patients who 
with vision restored later in life fail to exhibit the full rep-
ertoire of visual capabilities. Hebb (1949) might say that 

the reason for this is that the cell assemblies that needed to 
be developed failed to do so because the individuals were 
not allowed to effectively move their bodies about to cre-
ate the necessary paired associations over time for learning 
to occur.

Learning has been studied in depth in behaving pri-
mates. Conditional oculomotor experiments were per-
formed by Chen and Wise (1995a, b, 1996, 1997) on mon-
keys viewing a TV monitor (also see Mitz et al. 1991). As 
monkeys fixated a centrally located spot of light on the 
monitor, the spot of light was exchanged for a novel com-
plex visual stimulus. This was followed by the presenta-
tion of four identical targets located seven degrees from the 
fixation spot: up, down, left, and right. It was the task of 
a monkey to generate a saccadic eye movement to the tar-
get that would yield a juice reward. As a monkey learned 
this trial-and-error task, single-cell recordings were made 
of neurons in the frontal lobes (i.e. the frontal and supple-
mentary eye fields). It was found that some cells had an 
increase in activity as a function of learning, others had a 
decrease in activity, and still other had an increase followed 
by a decrease. It was of interest that the cells that increased 
their activity following learning tended to show an activ-
ity evolution that lagged behind behavioural improvement; 
the cells that increased their activity transiently during 
learning, thus decreasing their activity following learn-
ing consolation, tended to show an activity evolution that 
preceded behavioural improvement (Fig. 3 of Mitz et al. 
1991; Figs. 10 and 11 of Chen and Wise 1995a). Such a 
process to be effective, however, is created through devel-
opment and learning as suggested by Hebb (1949) which 
uses post-movement feedback loops to carry environmental 
information (at latencies >15 ms, Liddell and Sherrington 
1924; Lisberger 1984; Miles et al. 1986; Myklebust 1990; 
Corden et al. 2000; Barnett-Cowan and Harris 2009) and 
which explains why, once the learning of a task has been 
completed, movement execution becomes faster and more 
accurate. The completion of this process can take a very 
long time when mastering a language or becoming a world-
class athlete.

It is now believed that the dopaminergic projections 
originating in the substantia nigra and innervating vast por-
tions of the cerebral cortex are involved in this process by 
providing a reward signal to reinforce behaviour (Berger 
et al. 1986, 1988; Ljungberg et al. 1992; Schultz et al. 
1993; Mirenowiez and Schultz 1994; Schultz et al. 1997; 
Hikosaka et al. 2000; Matsumoto and Hikosaka 2009). The 
dopaminergic modulation strengthens the synaptic con-
nectivity between neurons (Reynolds and Wicken 2002) 
as information about the body is being transmitted by 
various sensory feedback loops (Kato et al. 1995; Kawa-
goe et al. 1998; Sato and Hikosaka 2002). This process of 
transfer of information constitutes the volitional control of 
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movements, and a disruption of it leads to locked-in syn-
dromes such as Parkinsonism (Kato et al. 1995).

Information transfer

Hitherto we have argued that sensorimotor information, as 
processed through learning, is conveyed between the body 
and the brain (Gibson 1979; Clark 1998). Without sensory 
and motor learning, there is little information transferred as 
evidenced by totally locked-in patients (i.e. those exhibit-
ing no skeletal, ocular, and sphincter movements under 
volitional control) who lose the ability to control their brain 
activity using biofeedback (Birbaumer 2006). In these stud-
ies, these subjects could no longer use their electroencepha-
lographic activity (EEG) to control external devices which 
was attributed to a diminished reward contingency that 
depends on sensory feedback to the central nervous system. 
This concurs with observations made in monkeys denied 
reward delivery during the volitional control of neurons 
that abolishes the control (Fig. 1a). So, a patient in a veg-
etative state transfers little information. On the other hand, 
a paralysed person who can still move his eyes to dictate to 
a PC computer can generate goal-directed movements and 
is therefore functional albeit at a reduced level.

The brainstem and spinal cord have the capacity to pro-
duce organized yet simple ocular and skeletal movements, 
yet damage to these structure results in severe paraly-
sis (Leigh and Zee 2006; Borton et al. 2014). Ethier et al. 
(2012) trained two monkeys to grasp a ball and drop it in 
a container. As the monkeys performed this task, a group 
of cells was recorded from the motor cortex and their 
activity was correlated with the activity of the hand mus-
cles engaged during the task. The spinal nerve projecting 
to the hand muscles was anaesthetized and the signal from 
the cortical motor neurons was used to trigger an electri-
cal stimulator that activated the hand muscles. Following 
anaesthesia of the nerve, the performance of the monkeys 
was <10 % correctness. Under neuronal control, the mon-
keys performed at 76 to 80 % correctness; normally the 
monkeys performed the task at over 98 % correctness using 
the intact brain. In this experiment, all the remaining mus-
cles and pathways were functional such as the muscles and 
pathways to support the arm as the monkeys reached to 
the container with the grasped ball. How many pathways 
projecting to and from the brainstem and spinal cord of 
monkeys would need to be disabled in order to abolish all 
information transfer as observed by Birbaumer (2006) in 
his totally locked-in patients? This would be no easy exper-
iment to accomplish, but an answer to this would move 
us closer to determine whether the mind can be separated 
from the body experimentally. We suspect that a transition 
between the two might not be abrupt, but rather exhibit a 

gradual degradation of behavioural performance as addi-
tional pathways are cut (Birbaumer 2006).

The brain is an organ designed for the transfer of infor-
mation. Transfer rates can be as low as 0.004 bits/s for neu-
rons-to-neurons communication and as high as 40 bits/s for 
the production of human language (Fig. 3). A transfer rate 
of 40 bits/s translates into over 1 trillion possibilities per 
second given that:

The low transfer rate exhibited for neurons-to-neurons 
communication is related to the fact that the transfer was 
based on recordings from many dozens of neurons in the 
brain (Pais-Vieira et al. 2013), while the high transfer rate 
for speech production could be due to a larger portion of the 
human brain, which contains billions of neurons (Hercu-
lano-Houzel 2009), being involved in the execution of this 
behaviour (Ojemann 1983, 1991). To reinforce this point, 
Levy et al. (2004) estimated using fMRI that many millions 
of neurons in the human visual system are involved in the 
coding of a single visual image.

Furthermore, when recording from an isolated group of 
neurons to transfer information, the sensory feedback loops 
carrying information about the body are not as available 
to those neurons due to the anatomical restrictions on the 
cells producing the signal. For example, using EEG from 
the occipital cortex to transmit Morse code transferred 
0.05 bits/s of information (Dewan 1967), while using the 
entire brain (a human subject depressing a key to gener-
ate Morse code) to accomplish this task transferred 4 bits/s 
(Reed and Durlach 1998) (Fig. 3). One way of appreciating 
this difference is that to generate one letter using EEG took 
about 1 min while to produce one letter by hand required 

Number of possibilities = 2bits

Fig. 3  Information transfer rates. The values for neurons-to-neurons 
interfaces are from Tehovnik and Teixeira-e-Silva (2014), the value 
for neurons-to-Morse code is from Dewan (1967), and the values 
for neurons-to-device and neurons-to-arm are from Tehovnik et al. 
(2013). The values for brain-to-Morse code, brain-to-typing, brain-to-
speaking, and brain-to-piano are from Reed and Durlach (1998). The 
value for an iPad was deduced from that posted in Wikipedia for an 
iPad 2 using an Apple A5 systems-on-chip device, rated at 6.4 GB/s
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0.3 s (Dewan 1967; Reed and Durlach 1998). This repre-
sents a 200-fold difference in latency. A recent neurons-
to-neurons communication experiment conducted by Grau 
et al. (2014) in human also transferred information at the 
exceedingly low rate of 0.03 bits/s which is comparable 
to the 0.05 bit-rate value for EEG-generated Morse code 
(Dewan 1967; also see Rao et al. 2014). Furthermore, 
Birbaumer et al.  (1999) showed that using EEG a para-
lysed patient transmitted information at a rate of 0.04 bits/s 
to communicate several lines of text; this communica-
tion took 16 h to complete which is well in excess of the 
time required by normal subjects using verbal or written 
communication.

An important issue for many brain–machine interfaces 
used in paralysed patients and in intact monkeys is that 
training often has to occur every day in order for task 
performance to be maintained (Ganguly and Carmena 
2009), and the responsive neuron counts are exceed-
ingly low, as the information transfer rates saturate after 
40 cells regardless of the state-of-the-art recording elec-
trode arrays being used (Fig. 4). Whether this is related 
to a drop in the richness of sensory feedback to the cells 
mediating the behaviour is currently being studied by 
using electrical stimulation of the somatosensory and vis-
ual systems in behaving monkeys to provide a feedback 
signal (e.g. London et al. 2008; Schiller and Tehovnik 
2008; O’Doherty et al. 2011; Tehovnik and Slocum 2013; 
Zaaimi et al. 2013; Godlove et al. 2014; Klaes et al. 
2014).

A musician playing Mozart on a piano can transfer infor-
mation at a rate of 40 bits/s (Reed and Durlach 1998). Ver-
bal communication between people also transfers informa-
tion at a rate of 40 bits/s. It is without question that a brain 
with an intact body transfers information better than a brain 
without a body [Fig. 3, cf. right values for rates >2 bits/s 
(brain-to-Morse code, brain-to-typing, brain-to-speaking, 
brain-to-piano) vs. left values for rates <2 bits/s (neurons-
to-neurons visual, neurons-to-neurons tactile, neurons-to-
Morse code, neurons-to-device, neurons-to-arm); for com-
parison the information transfer rate of an iPad is indicated 
on the extreme right].

Quantification of information transfer rates

One of the challenges in systems neuroscience is to have 
a universal metric by which to compare the various neuro-
behavioural studies. We have suggested that the use of 
Shannon’s formulation of information transfer (Shannon 
1948) could be one solution to this problem (Tehovnik 
and Teixeira-e-Silva 2014). The use of information the-
ory in neuroscience is not a novel idea (e.g. Miller 1956; 
Georgopoulos and Massey 1988; Reed and Durlach 1998; 
Sporns et al. 2000; Wolpaw et al. 2002; Dornhege 2006; 
Tononi 2008; Tehovnik et al. 2013; Yuan et al. 2013). Ton-
oni (2008) has suggested that having a million photodiodes 
with each being able to transfer 1 bit of information means 
that the total information transferred is 1 million bits for 
a non-integrated system. In reference to the brain, he has 
argued that by having those one million photodiodes (i.e. 
neurons) connected, the information transfer would now 
be able to surpass 1 million bits. Behaviourally, informa-
tion transfer depends on the sensory resolution, the stimu-
lus–response feedback, and the amount of prior learning 
and recall (Miller 1956; Reed and Durlach 1998). Just how 
the brain might accomplish this transfer is depicted using 
the scheme of Tononi (2008): the information transfer rate 
should increase across species as the connectivity between 
the neurons is increased (Fig. 5, exp > 1). The transfer of 
information by disconnected neurons is shown for compari-
son (Fig. 5, exp = 1). A single-cell amoeba (Mast 1931) 
can orient towards a light source or away from a predator, 
just like the behaviours exhibited across various organisms. 
In this case, information is transferred and quantification of 
its transfer rate may be possible. Nevertheless, the details 
behind this process for single and multicellular organisms 
are not known at this point.

Information theory can be used to assess how much 
information is being transmitted by the lateral intraparietal 
cortex, for example, to make a decision about target choice 
using the data of Shadlen and Newsome (1996). Figure 6a 
plots the choice prediction for four levels of visual stimu-
lus saliency (i.e. 0, 6.4, 12.8, and 51.2 % of moving dots) 

Fig. 4  Normalized brain–machine interface (BMI) signal is plot-
ted as a function of the number of neurons used to derive the signal 
based on neural recordings with wire electrodes fixed in the brains of 
monkeys. The signal saturates after 40 neurons. Data obtained from 
neural drop experiments: Wessberg et al. 2000; Carmena et al. 2003; 
Hatsopoulos et al. 2004; Musallam et al. 2004; Sanchez et al. 2004; 
Carmena et al. 2005; Lebedev et al. 2005; Achtman et al. 2007; Wah-
noun et al. 2006; Batista et al. 2008; Cunningham et al. 2008; Mul-
liken et al. 2008; Bansal et al. 2011, 2012. Values were deduced for 
20, 50, and 80 % of maximal signal strength by averaging over 14 
experiments. The maximal response occurred at 92 cells on average
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by measuring the choice probability of a population of 
lateral intraparietal neurons (n = 47) studied as monkeys 
discriminated the direction of dot motion. Monkeys were 
required to generate an eye movement to one of the two tar-
gets specifying the direction of the motion presented on a 
monitor facing an animal. One of the targets always fell in 
the motor receptive field of the neuron under study, while 
the moving dots were always positioned well outside of 
any receptive field. The bits of information transmitted by 
the population of neurons were computed from the choice 
probability scores (Shannon and Weaver 1964; Wolpaw 
et al. 2002). The amount of information transmitted 
increased from 0 to 0.066 bits as the saliency of the moving 
dots was enhanced from 0 to 51.2 % (Fig. 6b). Based on the 
time to complete one discrimination trial, which was about 
3 s for a monkey, the maximal information transferred by 
cells in the lateral intraparietal cortex was some 0.02 bits/s. 
A monkey performing at 100 % correctness on the discrim-
ination task (i.e. at 1 bit on a two-choice task) can transfer 
some 0.33 bits/s using a 3 s trial time. Thus the informa-
tion transfer rate by several dozens of cells in the lateral 
intraparietal area transfers some 6 % (0.02/0.33 bits/s) of 
the needed signal to perform this two-choice discrimi-
nation task at 100 % correctness. This low transfer rate 
concurs with the observation that lesions of the lateral 

intraparietal area fail to abolish choice behaviour (Schiller 
and Tehovnik 2003, 2015). Furthermore, this affirms once 
again that large populations of networked neurons are nor-
mally engaged when behaviour is being executed and this 
calls for a complete understanding of the neural systems 
that mediates these functions (Schiller and Tehovnik 2001). 
If neural recordings could have been made at all the criti-
cal nodes in the network mediating the decision process, 
we believe that the neural information transfer rate would 
begin to approximate the behavioural information transfer 
rate of 0.33 bits/s. The exercise of converting per cent cor-
rectness scores (a common measure in neuroscience) into 
bits per second could be accomplished for the various per 

Fig. 5  Information transfer is plotted as a function of number of neu-
rons using a linear and exponential model. The number of neurons 
contained within the brains of various species is indicated. Values 
for the amoeba, roundworm, leech, ant, mouse, macaque, and human 
were derived, respectively, from: Mast (1931), White et al. (1986), 
Kuffler and Potter (1964), Hölldobler and Wilson (1990), Herculano-
Houzel et al. (2006), and Herculano-Houzel (2009). Two models are 
proposed based on the ideas of Tononi (2008). Exp = 1: the informa-
tion transfer rate increases linearly with the number of neurons so the 
exponent is 1. This model assumes no connectivity between neurons. 
Exp > 1: the information transfer rate increases exponentially with 
the number of cells so the exponent is >1. This model assumes con-
nectivity between neurons

Fig. 6  Transmission of information during choice behaviour. a 
Choice probability is plotted as a function of time after stimulus 
onset for different levels of stimulus-direction saliency for 47 neu-
rons recorded from the lateral intraparietal cortex of monkeys as 
they performed a two-choice motion discrimination task. b The 
amount of information in bits transmitted by the neurons as a func-
tion of stimulus saliency to initiate the two-choice discrimination task 
is shown. Calculations are based on monkeys generating eye move-
ments to indicate leftward and rightward dot motion (see inset in a). 
The formula used to deduce the bit rates is: Bits = log2 N + P log2 
P + (1 − P) log2 [(1 − P)/(N − 1)], where N is number of targets 
(i.e. two) and P is per cent-correct (from A). Note that adjustments 
were made to the score since the 0 % saliency condition generated 
predictive neural activity at 61 % correctness since the cells were par-
tially tuned for eye movement direction irrespective of the stimulus 
saliency. This value (11 % above chance: 61–50 %) was subtracted 
from the other performance values (61, 64, 69, and 76 % for 0, 6.4, 
12.8, and 51.2 % stimulus saliency, respectively) to yield 50, 53, 
58, and 65 % correctness scores for 0, 6.4, 12.8, and 51.2 % stimu-
lus saliency. These final values were then used to compute the bits of 
information as shown in b. Figure a is based on figure 3 of Shadlen 
and Newsome (1996)
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cent-correct data sets existent in behavioural neuroscience 
so as to evaluate quantitatively how important a particu-
lar node within a neural network is in the execution of a 
behavioural response (Tehovnik et al. 2013; Tehovnik and 
Teixeira-e-Silva 2014).

Despite the attractiveness of using information theory 
to establish a standard metric in neuroscience, there are 
some caveats. In the paper of Tehovnik et al. (2013), the 
bit rate for the brain–machine interface performance of a 
centre-out motor task was computed by dividing each bit-
rate value by the trial time used to execute the behaviour. 
This value for behaving human and nonhuman primates 
was estimated to be approximately 4–6 s. Others have used 
neural time as the denominator of the bit-rate calculation 
which increases the rate by one order of magnitude (San-
thanam et al. 2006). Thus the standards used in making a 
bit-rate calculation need to be uniform.

Yuan et al. (2013) point out that when deducing the bit 
rate from per cent correctness data [e.g. using the formula 
of Wolpaw et al. 2002: Bits = log2 N + P Log2 P + (1 − P) 
Log2 [(1 − P)/(N − 1)] where N is number of targets and 
P is the per cent correctness score, one must pay attention 
to the number of test trials used to deduce a performance 
score. This can only be done by having a sufficiently large 
sample size to reduce the variance of the per cent correct-
ness score to below 5 %. Furthermore, the formula used to 
deduce bit rates from per cent correctness data glosses over 
details such as target size (Baranauskas 2014). Anyone who 
studies the visual system can appreciate that visual targets 
as small as 1 min of visual angle can be resolved by the 
retina (Schiller and Tehovnik 2015). Given the myriad of 
parameters used by behavioural tasks studied in neuro-
science, information theory will need to be expanded to 
accommodate these parameters (Baranauskas 2014). We 
believe that this could be done in order to better quantify 
behavioural performance so that it can be more effectively 
correlated with neural activity.

Implications for brain–machine interfaces

It has been established that current brain–machine inter-
faces transfer information via the brain at exceedingly low 
rates (Fig. 3, neurons-to-device transfers 0.2 bits/s on aver-
age, see Tehovnik et al. 2013 for details). We suggest that 
these low rates are related to bypassing the sensory input 
that results when neural signals to control external devices 
are collected directly from the brain. As mentioned earlier, 
efforts have been made to substitute the sensory input by 
electrically activating cells in the sensory cortex directly 
in behaving monkeys (London et al. 2008; Schiller and 
Tehovnik 2008; O’Doherty et al. 2011; Tehovnik and Slo-
cum 2013; Zaaimi et al. 2013; Godlove et al. 2014; Klaes 

et al. 2014). So far this manipulation has not resulted in 
an increase in information transfer which was less than 
0.2 bits/s when stimulating several sites in the soma-
tosensory cortex (O’Doherty et al. 2011; Tehovnik et al. 
2013; also see Godlove et al. 2014). Whether improving 
the resolution of neural excitation by using more targeted 
stimulation by way of optogenetics or by stimulating fibres 
electrically closer to the sensory organ will need to be 
investigated. In the end, a necessary requirement for future 
brain–machine interfaces might be to re-create the sensory 
world prosthetically as close as possible to that of a normal 
system (Schiller and Tehovnik 2008).

The information transfer rate of current brain–machine 
interfaces is also limited by the number of cells partici-
pating in the control of a device given that information 
saturates beyond 40 cells using current signal-collection 
methods (Fig. 4). As discussed, normal behaviours are con-
trolled by many millions of neurons. This is especially true 
of a complex behaviour such as language whose execution 
depends on a high information transfer rate of 40 bits/s 
(Fig. 3). Whether future brain–machine interfaces can 
enhance information transfer by accounting for the vast 
numbers of neurons mediating behaviour as mimicked 
by a prosthetic device (which should include the neurons 
subserving sensory feedback) awaits further advances in 
recording technology.

Finally, it is well known that persons using a cochlear 
implant may require over a year of training to re-learn their 
language as transmitted through the device (Luntz et al. 
2005). Such devices once mastered are able to transmit 
10 bits/s (Dunn et al. 2010). Patients using future brain–
machine interfaces will likely need extensive training so 
that the information transfer rate can be optimized.

Conclusions

We arrive at a number of conclusions. First, experiments 
on the volitional control of neuronal circuits suggest that 
the body is a central part of this control. Second, the 
brain receives sensory inputs from the proprioceptive, 
visual, and vestibular systems to code egocentric and 
gravitational space. These inputs are central to the voli-
tional control of neurons. Third, learning depends on an 
intact body to generate the appropriate contingencies via 
feedback loops. Disruption of these loops diminishes the 
volitional control of neurons. Fourth, the highest informa-
tion transfer rates in terms of bits per second are achieved 
via an intact body that permits for maximal sensorimotor 
feedback from the environment. Fifth, methods need to 
be developed to better understand how the neural connec-
tions within the brains of different animals participate in 
the transfer of information as behavioural tasks are being 
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executed. This should lead to a better understanding of 
how the brain mediates behaviour as well as to the devel-
opment of improved brain–machine interfaces executing 
behaviours mimicked by a prosthesis. Finally, current 
brain–machine interfaces transfer insufficient informa-
tion to move external devices. One of the reasons may be 
related to a diminished sensory feedback. Perhaps, sen-
sory feedback could be enhanced by building prosthetic 
sensory systems that approximate the functionality of 
normal systems. Also neural recording methods will need 
to account for signals generated by large portions of the 
brain which in humans contains many billions of neu-
rons. This is well in excess of the many dozens of cells 
now used by brain–machine interfaces to move external 
devices.
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